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Deep Learning: Generalities

• Since 2012
• Scientific and industrial revival on the use of Deep Learning

• Computing resources (GPU) / Big data (storage) / End of manual extraction of 
characteristics

• Numerous applications and uses
• Segmentation / Instance segmentation / Classification / Clustering / Dimension 

reduction / Data generation/ …

• Almost data agnostic
• Any tensor (tabular data, images, videos, ...) / graphs / structured business 

data / text / 



We consider 3 main limitations

• Technical limitations
• Legal limitations
• Acceptance limitation

Deep Learning: Limitations

3

https://www.francaisauthentique.com/usine-a-gaz/



• Sensitive to data bias and attacks in 
operational environments

• Do not always generalize

• Easily attacked

• Need to have masses of data

• The amount of data needed to learn a new 
model is astronomical / beyond the reach of 
a research lab  

• The black box effect

• Models are often oversized for their use

Deep Learning: Technical 
Limitations

4

Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning 

visual classification." Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition. 2018.
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Deep Learning: legal limitations

Black box effect

○ LGPD
○ Whenever requested to do so, the controller shall provide clear and adequate information 

regarding the criteria and procedures used for an automated decision, subject to commercial and 
industrial secrecy.

○ Loi pour une république numérique
■ Art. L. 311-3-1. – Sous réserve de l’application du 2o de l’article L. 311-5, une décision 

individuelle prise sur le fondement d’un traitement algorithmique comporte une mention explicite 
en informant l’intéressé. Les règles définissant ce traitement ainsi que les principales 
caractéristiques de sa mise en oeuvre sont communiquées par l’administration à l’intéressé s’il en 
fait la demande. «Les conditions d’application du présent article sont fixées par décret en Conseil 
d’État.»

■ Décret n° 2017-330 du 14 mars 2017 relatif aux droits des personnes faisant l'objet de décisions 
individuelles prises sur le fondement d'un traitement algorithmique

○ GDPR
■ Article 13 RGPD. Informations à fournir lorsque des données à caractère personnel sont 

collectées auprès de la personne concernée /2/f/ l’existence d’une prise de décision automatisée, 
y compris un profilage, visée à l’article 22, paragraphes 1 et 4, et, au moins en pareils cas, des 
informations utiles concernant la logique sous-jacente, ainsi que l’importance et les 
conséquences prévues de ce traitement pour la personne concernée. https://gdpr-
text.com/fr/read/article-13/

https://www.legifrance.gouv.fr/jorf/article_jo/JORFARTI000033202959
https://gdpr-text.com/fr/read/article-13/


• The black box effect

• Models too deep/complicated to understand 
exactly what they do

• Acceptance & Criticism of decisions

• No guarantees offered on predictions

• Adoption for health, safety, autonomous 
vehicles, etc. difficult

Deep Learning: Acceptance 
limitations

6

Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of 

the IEEE conference on computer vision and pattern recognition. 2015.
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Deep Learning: Which solutions

• Technical limitations
• Sensitive to data bias and attacks: Improved learning, data collection and 

labeling methods, Creation of more robust models. (e.g. [AFGG17]), Addition of 
model checking mechanism (e.g. [G*19]), etc

• Need to have masses of data: data augmentation, pre-learning + specialization, 
one-shot/few-shot learning, ...

• The black box effect: XDL

• Legal limits
• The black box effect: XDL

• Acceptance limits
• The black box effect and criticality of decisions: XDL

[AFGG17]    Aung, A. M., Fadila, Y., Gondokaryono, R., & Gonzalez, L. (2017). Building robust deep neural networks for road sign detection. arXiv:1712.09327.

[G*19] Goel, Akhil, et al. "DeepRing: Protecting deep neural network with blockchain”, proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2019.



• Several aspects of importance

• Explainability, interpretability, 
transparency,… [BA*20]

• Provide (visual) tools to interpret various
aspects

• Model, dataset, sample, …

• Intrinsic explainable model vs Posthoc
analysis

eXplainable Deep Learning (XDL) 
goes beyond standard evaluation 
methods

8 [BA*l20]  A. Barredo Arrieta et al., Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward 

responsible AI, Information Fusion, Volume 58, Pages 82-115, 2020.
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Self interpretable models can be a solution

• Simple non deep learning models
• As replacement or student model

• Decision Tree, Decision Rules, Linear classifier

• Interpretable deep learning
• Modification of training procedure

• Addition of explainable modules

Inference

Data

Explanation

Prediction

Model



• Idea

• Depiction of the rules in a list

• Can be accompanied of metrics

• Limits

• Do not scale with the number of rules…

• … but some strategies can help to reduce 
their amount

Interpretability: standard 
association rules representation

10

Xu, Y., Li, Y., & Shaw, G. (2011). Reliable representations for 

association rules. Data & Knowledge Engineering, 70(6), 555-575.



• Idea

• Print the tree architecture …

• .. or Draw the tree in a node-link diagram

• Include additional information

• Limits

• Do not scale with the size of the tree

Interpretability: standard 
decision tree representation

11
https://mljar.com/blog/visualize-decision-tree/



• Idea

• The network learns concepts while learning 
to solve the task

• These concepts support the decision 
making and can be presented to the user

• Limitations

• When automatically computed, concepts 
may be hard to be named

Interpretability: Interpretable 
deep neural networks

13

Alvarez Melis, D., & Jaakkola, T. (2018). Towards robust 

interpretability with self-explaining neural networks. Advances in 

neural information processing systems, 31.

Zhang, Q., Wu, Y. N., & Zhu, S. C. (2018). Interpretable 

convolutional neural networks. In Proceedings of the IEEE 

conference on computer vision and pattern recognition (pp. 

8827-8836).



• Local approaches

• Feature attribution

• Explanations by examples

• Counterfactuals

• Global approaches

• Feature attribution

• Learned features

• Model behavior

Posthoc Analysis

14

Inference

Data

Explanation

Prediction

Model

Posthoc
Analysis
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eXplainable Deep Learning (XDL)

Several communities involved
• Machine Learning

• Information Visualization



Feature Attribution: Individual 
Conditional Expectation

16

Greenwell, B. M., Boehmke, B. C., & McCarthy, A. J. 

(2018). A simple and effective model-based variable 

importance measure. arXiv preprint arXiv:1805.04755.

• Black box / global
• Aim

• Show marginal effect of a feature on the 
predicted outcome of a model

• Idea

• Iteratively replace, for all samples, each 
feature value by one of the domain

• Limitations

• Number of selected features must be small 
(e.g. constrained to tabular data)

• Features must be uncorrelated



Feature attribution: 
Partial Dependency Plot

17

Greenwell, B. M., Boehmke, B. C., & McCarthy, A. J. 

(2018). A simple and effective model-based variable 

importance measure. arXiv preprint arXiv:1805.04755.

• Black box / local
• Similar to Individual Conditional 

Expectation

• BUT depict the average instead of all 
samples



• Black box / global
• Aim

• Describe how features influence the 
prediction of a machine learning model on 
average

• Idea

• Compute the output difference when 
replacing a feature by its local extremums

• Limitations

• Number of selected features must be small 
(e.g. constrained to tabular data)

• Quantiles are used to discretize feature 
space (bins are of different width)

Feature attribution: 
Accumulated Local Effect Plot

18

https://christophm.github.io/interpretable-ml-book/ale.html

Apley, D. W., & Zhu, J. (2020). Visualizing the effects of 

predictor variables in black box supervised learning models. 

Journal of the Royal Statistical Society: Series B (Statistical 

Methodology), 82(4), 1059-1086.



• Black box / global
• Aim

• Measures the increase in the prediction 
error of the model after permutation of the 
feature’s values

• Idea

• Permutes feature value over samples and 
compute feature importance by comparing 
obtained error rate with initial one

• Limitations

• Number of selected features must be small 
(e.g. constrained to tabular data)

Feature attribution:
Permutation Feature Importance

19

Fisher, A., Rudin, C., & Dominici, F. (2019). All Models are 

Wrong, but Many are Useful: Learning a Variable's Importance 

by Studying an Entire Class of Prediction Models 

Simultaneously. J. Mach. Learn. Res., 20(177), 1-81.

https://christophm.github.io/interpretable-ml-book/feature-importance.html



• Black box / local
• Idea

• Learns a local surrogate (and interpretable) 
model to explain a specific instance

• Relies on the removal of input features to 
generate neighbors

• Scales on images by using superpixels

• Limitations

• Removal of input features is not well defined

• Method is not stable

Feature attribution: Lime

20

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" 

Why should i trust you?" Explaining the predictions of any 

classifier." Proceedings of the 22nd ACM SIGKDD international 

conference on knowledge discovery and data mining. 2016.



• Black box / local
• Idea

• Relies on random masks to generate 
neighbors

• Scales by generating low resolution masks

• Masks contribution depends on model 
output

• Limitations

• Limited to image classification

Feature attribution: RISE

21Petsiuk, V., Das, A., & Saenko, K. (2018). Rise: Randomized

input sampling for explanation of black-box models. arXiv

preprint arXiv:1806.07421.



Feature attribution: 
Class Activation Mapping-based 
methods

22

• White box / local
• Idea

• Focuses on the last pooling layer before the 
first fully connected layer

• Relies on activations (and eventually 
gradients)

• Limitation

• CAM requires a network modification (not 
GRADCAM)

• Fails to localize full object

• Explanation resolution is low

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). 

Learning deep features for discriminative localization. In 

Proceedings of the IEEE conference on computer vision and pattern 

recognition (pp. 2921-2929).

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., 

& Batra, D. (2017). Grad-cam: Visual explanations from deep

networks via gradient-based localization. In Proceedings of the 

IEEE international conference on computer vision (pp. 618-626).



Feature attribution:
Layerwise Relevance 
Propagation

23

• White box / local
• Idea

• Rule-based system to propagate relevance 
from output to input

• Heterogeneous rules can be combined

• Explanation resolution is high

• Limitations

• Architecture has to be compatible with rules

• Rules can be complex to configure
Montavon, G., Binder, A., Lapuschkin, S., Samek, W., & Müller, 

K. R. (2019). Layer-wise relevance propagation: an overview. 

Explainable AI: interpreting, explaining and visualizing deep

learning, 193-209.



Feature attribution: FEM

24

• White box / local
• Idea

• Focuses on the latest convolutional result

• Relies ONLY on activation values

• Evaluation shows a better correspondence 
with gaze fixation density maps than 
gradcam

• Limitations

• Low resolution (a workaround is to use 
Multi-Layered FEM)Fuad, K. A. A., Martin, P. E., Giot, R., Bourqui, R., Benois-

Pineau, J., & Zemmari, A. (2020, November). Features

understanding in 3D CNNS for actions recognition in video. In 

2020 Tenth International Conference on Image Processing

Theory, Tools and Applications (IPTA) (pp. 1-6). IEEE.



25

Feature attribution has still some limitations

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., & Kim, B. 

(2018). Sanity checks for saliency maps. Advances in neural information 

processing systems, 31.
Dombrowski, A. K., Alber, M., Anders, C., Ackermann, M., Müller, K. R., & 

Kessel, P. (2019). Explanations can be manipulated and geometry is to 

blame. Advances in Neural Information Processing Systems, 32.

The modification of the network may

have few impact on the explanation

Explanations can be forged



• White box / global
• Idea

• Generation of an artificial input image

• Optimization of the class score

• Limitation

• Final result is completely  out of distribution

Learned Features: 
Class-score Maximization

26

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside

convolutional networks: Visualising image classification models and 

saliency maps. International Conference on Learning 

Representations Workshop, 2014. 

J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, H. Lipson. 

Understanding neural networks through deep visualization. 

International Conference on Machine Learning Deep Learning 

Workshop, 2015. 

https://arxiv.org/pdf/1312.6034.pdf
http://yosinski.com/media/papers/Yosinski__2015__ICML_DL__Understanding_Neural_Networks_Through_Deep_Visualization__.pdf
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Learned Features: Feature Visualization

A step beyond

Olah, C., Mordvintsev, A., & Schubert, L. (2017). Feature visualization. Distill, 2(11), e7.



• White box / global
• Idea

• Relies on deep generator to improve realism 
of generated samples

• Optimization of the embedding of a trained 
network

Learned features: data synthesis

28

Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., & Clune, J. 

(2016). Synthesizing the preferred inputs for neurons in neural 

networks via deep generator networks. Advances in neural 

information processing systems, 29.



• White box / global
• Idea

• Identifies human-labeled visual concepts

• Gathers hidden variables response to 
known concepts

• Qualifies alignment of hidden 
variable/concept pairs

• Limitations

• Limited to convolutional layers  

Learned Features: Network 
dissection

29

Bau, D., Zhou, B., Khosla, A., Oliva, A., & Torralba, A. 

(2017). Network dissection: Quantifying interpretability of 

deep visual representations. In Proceedings of the IEEE 

conference on computer vision and pattern recognition (pp. 

6541-6549).



• White box / local
• Idea

• Identifies concepts related to classes

• Computes relative proximity between 
samples and concepts

• Limitations

• Limited to concepts explicitly trained (e.g. 
properly defined and with training data)

Learned Features:
Concept Activation Vectors

30

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., & 

Viegas, F. (2018, July). Interpretability beyond feature

attribution: Quantitative testing with concept activation 

vectors (tcav). In International conference on machine 

learning (pp. 2668-2677). PMLR.



Learned features : rules 
extraction

31

Zilke, J. R., Loza Mencía, E., & Janssen, F. (2016, October). 

Deepred–rule extraction from deep neural networks. In 

International conference on discovery science (pp. 457-473). 

Springer, Cham.

• White box / global
• Idea

• Extract global rules from the network

• Display them

• Limitations

• Few proposals in the literature. 

• Seem to focus on tabular data with few 
features
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Explanation by example: Influential instances

• Black box / global
• Idea

• Influential instances used for training have a strong impact on the model 
performance

• We expect to have few influential instances in the training set to trust the 
model

• Strategy: remove samples from training data and observe difference in 
retrained model

https://christophm.github.io/interpretable-ml-book/influential.html



• Black box / local
• Idea

• If-then rules

• Modification of other features of the anchor 
has no impact on the prediction

• Limitations

• Lots of parameters

• Computationally intensive

• Anchors at the boundary decision are 
complex

• To compute the domain distribution may be 
complex

Explanation by example: anchors

33
Marco Tulio Ribeiro, Sameer Singh and Carlos Guestrin. 

“Anchors: high-precision model-agnostic explanations”. AAAI 

Conference on Artificial Intelligence (AAAI), 2018



Explanation by example: 
counterfactuals

34

• White and black box / local
• Idea

• Answers the question: given a classifier and 
an observation, what is the closest sample 
with another groundtruth

• Generation of a random sample that 
minimize a loss (low distance with sample 
to explain + expected prediction)

• Case Base Reasoning

• Limitation

• Sensitive to the Rashomon effect (many 
different counterfactuals can be generated)

• Out Of Distribution

Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., & 

Flach, P. (2020, February). FACE: feasible and actionable

counterfactual explanations. In Proceedings of the AAAI/ACM 

Conference on AI, Ethics, and Society (pp. 344-350).

Keane, M. T., & Smyth, B. (2020, June). Good counterfactuals and 

where to find them: A case-based technique for generating 

counterfactuals for explainable ai (xai). In International Conference 

on Case-Based Reasoning (pp. 163-178). Springer, Cham.



Explanation by example: counterfactuals

• Criteria for a good counterfactual
• (reduced) Prolixity (search for the minimal changes)

• Sparsity (few features modified)

• Plausibility (data points in the domain)

35



• Idea

• Generators are composed of rules with a 
specific semantic

• To rewrite a model needs to understand the 
rules

• think of the layer as a memory that 
associates keys to values.

• Limitation

• Approach for generative models only

• Explanation is not the key of approach

Model behavior: 
Rewriting a model

36

Bau, D., Liu, S., Wang, T., Zhu, J. Y., & Torralba, A. (2020, 

August). Rewriting a deep generative model. In European

conference on computer vision (pp. 351-369). Springer, 

Cham.
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Model behavior: generalities

In opposite to static data and visualization from previous 
slides
• In fact most approaches rely on Visual Analytics

• So they are presented a bit later in the presentation



Information Visualization ?

• “Visualization can be 
described as the mapping 
of data to visual form that 
supports human 
interaction in a workspace 
for visual sense making”
[C*99]

• Use at best the Visual and 
cognitive capacities of the 
user

[C*99] S. Card et al., Readings in information visualization: using vision to think, Morgan Kaufmann.38
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This is a short story in human history

● First visual representations dates from the end of the 18th

● Updated with the book 
Sémiologie Graphique
(1967) by J. Bertin
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Computing ressources allow to design interactive 
and complex visualization. But some rules remains

[M91] J. Mackinlay.  Automating the design of graphical presentations of relational information. ACM Trans Graph, 5(2):110–141, April 1986.  ISSN 0730-0301.  doi:  10.1145/22949.22950.
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Scientific visualization concerns concrete data



42

Information visualization concerns abstract data
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Rulematrix

Ming, Y., Qu, H., & Bertini, E. (2018). Rulematrix: Visualizing and understanding classifiers with rules. IEEE transactions on visualization and computer 

graphics, 25(1), 342-352.
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iForest

Zhao, X., Wu, Y., Lee, D. L., & Cui, W. (2018). iforest: Interpreting random forests via visual

analytics. IEEE transactions on visualization and computer graphics, 25(1), 407-416.
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Confusion wheel

Alsallakh, B., Hanbury, A., Hauser, H., Miksch, S., & Rauber, A. (2014). Visual methods for analyzing probabilistic classification 

data. IEEE transactions on visualization and computer graphics, 20(12), 1703-1712.



To visualize model architecture is necessary but not 
sufficient

47

Bauerle, A., Van Onzenoodt, C., & Ropinski, T. (2021). Net2Vis-A Visual Grammar for 

Automatically Generating Publication-Ready CNN Architecture Visualizations. IEEE Transactions 

on Visualization and Computer Graphics.
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Wongsuphasawat, K.; Smilkov, D.; Wexler, J.; Wilson, J.; Mané, D.; Fritz, D.; 

Krishnan, D.; Viégas, F. B. & Wattenberg, M. Visualizing dataflow graphs of 

deep learning models in TensorFlow IEEE transactions on visualization and 

computer graphics, IEEE, 2018, 24, 1–12



Expectations of users diverge among
applications

48

Smilkov, Daniel, et al. "Direct-manipulation visualization of deep networks." 

arXiv preprint arXiv:1708.03788 (2017).

Garcia Caballero, H. S.; Westenberg, M. A.; Gebre, B. & van Wijk, J. J. V-Awake: A Visual 

Analytics Approach for Correcting Sleep Predictions from Deep Learning Models Computer 

Graphics Forum, 2019, 38, 1-12



Local and global approaches are complimentary

49 Halnaut, Adrien, et al. "Deep Dive into Deep Neural Networks with Flows." Proceedings of the 15th International Joint Conference on 
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020): IVAPP. Vol. 3. 2020.

Meghna P Ayyar, Akka Zemmari, Jenny Benois-pineau, unpublished work



Visual analytics can help to build simpler models

50

Pezzotti, N.; Höllt, T.; Van Gemert, J.; Lelieveldt, B. P.; Eisemann, E. & Vilanova, A. 

DeepEyes: Progressive visual analytics for designing deep neural networks.

IEEE transactions on visualization and computer graphics, IEEE, 2018, 24, 98–108 

Li, Guan, et al. "CNNPruner: Pruning Convolutional Neural Networks with Visual Analytics." IEEE 

Transactions on Visualization and Computer Graphics (2020).



Performance understanding is strongly linked to 
dataset understanding

51

Romain Giot, Romain Bourqui, Nicholas Journet, Anne Vialard, "Visual 

Graph Analysis for Quality Assessment of Manually Labelled Documents 

Image Database", 13th International Conference on Document Analysis 

and Recognition (ICDAR 2015), pp 1136–1140, 2015.

Cabrera, Ángel Alexander, et al. "Fairvis: Visual analytics for discovering intersectional bias in machine 
learning." 2019 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2019.



Some XAI works in my lab

52

Flow analysis of data over network

A. Halnaut, R. Giot, R. Bourqui, D. Auber. Deep Dive into Deep

Neural Networks with Flows. Proceedings of the 15th International 

Joint Conference on Computer Vision, Imaging and Computer 

Graphics Theory and Applications (VISIGRAPP 2020): IVAPP, Feb

2020, Valletta, Malta. pp.231-239.

A. Halnaut, R. Giot, R. Bourqui, D. Auber. Samples Classification 

Analysis Across DNN Layers with Fractal Curves. ICPR 2020's Workshop 

Explainable Deep Learning for AI, Jan 2021, Milano (virtual), Italy.

Network behavior over layers

https://hal.archives-ouvertes.fr/hal-02492393
https://hal.archives-ouvertes.fr/hal-03111634


Some XAI works in my lab

53

Deep neural network simplification
Pixel oriented data projection

Improvment of feature attribution methods

A. Halnaut, R. Giot, R. Bourqui, and D. Auber, "VRGrid: Efficient Transformation of 2D Data into 

Pixel Grid Layout," Proceedings of the 26th International Conference Information Visualisation

(IV2022), 2022.



The future of interpretability

Sevastjanova, R.; Beck, F.; Ell, B.; Turkay, C.; Henkin, R.; Butt, M.; Keim, D. A. & 

El-Assady, M. Going beyond visualization: Verbalization as complementary 

medium to explain machine learning models 

Workshop on Visualization for AI Explainability at IEEE VIS, 2018

Abdul, A.; Weth, C. V. D.; Kankanhalli, M. & Lim, B. Y. COGAM: Measuring and Moderating Cognitive 

Load in Machine Learning Model Explanations 

Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 2020

• Verbalization should 
help for understanding

• Direct / no interpretation / 
no learning

• Self and posthoc
explanability and should 
co-occur

• There are opportunities 
to create simpler 
explanations, easier to 
understanding even if 
less true

54



The future of explainability

• Collaborations between machine learning & 
visualization communities need to be strengthened

• data experts / model experts / data viz experts

• Call for papers should be opened to both communities

• Semantic information has to be provided to 
interpretations

• Feature importance do not bring enough information

• Deciders needs to take decision on semantic

• Interpretability has to be trustworthy

55
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